For `import_fst_chunked`, if a large fst file which could not be imported into the memory all at once, this function could read the fst file by chunks and preprocessed the chunk to ensure the results yielded by the chunks are small enough to be summarised in the end. For `get_fst_chunk_size`, this function can measure the memory used by a specified row number.
import_fst_chunked(
path,
chunk_size = 10000L,
chunk_f = identity,
combine_f = rbindlist
)
get_fst_chunk_size(path, nrows)
For `import_fst_chunked`, default to the whole data.frame in data.table. Could be adjusted to any type. For `get_fst_chunk_size`, return the file size.
if (FALSE) { # \dontrun{
# Generate some random data frame with 10 million rows and various column types
nr_of_rows <- 1e7
df <- data.frame(
Logical = sample(c(TRUE, FALSE, NA), prob = c(0.85, 0.1, 0.05), nr_of_rows, replace = TRUE),
Integer = sample(1L:100L, nr_of_rows, replace = TRUE),
Real = sample(sample(1:10000, 20) / 100, nr_of_rows, replace = TRUE),
Factor = as.factor(sample(labels(UScitiesD), nr_of_rows, replace = TRUE))
)
# Write the file to disk
fst_file <- tempfile(fileext = ".fst")
write_fst(df, fst_file)
# Get the size of 10000 rows
get_fst_chunk_size(fst_file,1e4)
# File all rows that Integer == 7 by chunks
import_fst_chunked(fst_file,chunk_f = \(x) x[Integer==7])
} # }